NextStat for Biologists & Pharma
Clinical trials, PK/PD, and treatment effects
You design clinical trials, model drug kinetics, and quantify treatment effects. NextStat gives you a fast, reproducible inference engine with survival analysis (Cox PH, Weibull, AFT), pharmacometrics (PK/PD, NLME), GLMs, and Bayesian NUTS — plus validation artifacts designed for GxP and 21 CFR Part 11 audit trails.
Why NextStat for Life Sciences?
Regulatory submissions require reproducible, auditable statistical analyses. NextStat produces deterministic validation reports (JSON + PDF) with dataset SHA-256 hashes, model specifications, environment fingerprints, and per-suite pass/fail — designed for IQ/OQ/PQ validation packs and FDA/EMA review.
What You Already Know → What NextStat Calls It
| Bio / Pharma | NextStat API | Context |
|---|---|---|
| Cox proportional hazards | nextstat.CoxPhModel() | Time-to-event with right censoring (Breslow/Efron ties) |
| Weibull / AFT survival | nextstat.WeibullModel() | Parametric survival: Weibull, log-normal AFT |
| PK 1-compartment oral | nextstat.pk_1cmt_oral() | Closed-form concentration C(t) with ka, ke, V |
| NLME (population PK) | nextstat.nlme() | Log-normal random effects, diagonal Omega, Laplacian approximation |
| Treatment effect (ATE) | nextstat.aipw() | Doubly-robust AIPW estimator for observational studies |
| Logistic regression | nextstat.logistic() | Binary outcomes with odds ratios and Wald CIs |
| Bayesian posterior | nextstat.sample_nuts() | NUTS/HMC with R-hat, ESS, divergence diagnostics |
| Validation report | nextstat validation-report | JSON + PDF artifact for IQ/OQ/PQ packs |
Quickstart: Survival Analysis
import nextstat
import numpy as np
# Time-to-event data with right censoring
times = np.array([4.1, 7.3, 2.0, 11.5, 6.8, 1.2, 9.4, 3.7])
events = np.array([True, True, False, True, True, True, False, True])
X = np.array([
[1, 65], [0, 72], [1, 58], [0, 61],
[1, 70], [0, 55], [1, 68], [0, 63],
], dtype=float) # treatment + age
# Cox PH with Efron ties
model = nextstat.CoxPhModel(times, events, X, ties="efron")
result = nextstat.fit(model)
print(f"Hazard ratios: {np.exp(result.params)}")
print(f"Standard errors: {result.std_errors}")
# Weibull parametric survival
weibull = nextstat.WeibullModel(times, events, X)
wb_fit = nextstat.fit(weibull)
print(f"Shape (k): {wb_fit.params[0]:.3f}")
print(f"Covariate effects: {wb_fit.params[2:]}")Quickstart: Population PK (NLME)
import nextstat
# Population pharmacokinetic model
# 1-compartment oral with log-normal random effects
subjects = [
{"id": 1, "times": [0.5, 1, 2, 4, 8], "conc": [2.1, 5.3, 4.8, 3.1, 1.2],
"dose": 100, "weight": 70},
{"id": 2, "times": [0.5, 1, 2, 4, 8], "conc": [1.8, 4.7, 4.2, 2.8, 0.9],
"dose": 100, "weight": 85},
# ... more subjects
]
# Fit population model: fixed effects (θ) + random effects (η)
pop_fit = nextstat.nlme(
model="pk_1cmt_oral",
data=subjects,
fixed={"ka": 1.0, "ke": 0.2, "V": 10.0}, # initial estimates
random=["ka", "V"], # random on absorption + volume
)
print(f"Population ka: {pop_fit.fixed['ka']:.3f}")
print(f"Population V: {pop_fit.fixed['V']:.2f}")
print(f"Omega (variance of random effects): {pop_fit.omega}")Validation: GxP-Ready Artifacts
NextStat's validation report is designed for regulated environments. The CLI produces a deterministic JSON artifact + optional PDF suitable for:
- IQ/OQ/PQ validation packs (FDA 21 CFR Part 11)
- EMA GxP / CSA (Computer Software Assurance) evidence
- Per-suite pass/fail with dataset fingerprints (SHA-256)
- Environment lock: OS, Rust version, cargo.lock hash, Python version
- Deterministic mode: stable JSON key ordering, reproducible PDF metadata
# Generate validation report (CLI)
nextstat validation-report \
--apex2 tmp/apex2_master_report.json \
--workspace workspace.json \
--out validation_report.json \
--pdf validation_report.pdf \
--deterministic
# Or via Makefile (local + CI)
make validation-packWhen to Use NextStat vs NONMEM / R
| Task | Best Tool |
|---|---|
| Complex multi-compartment PK with covariates | NONMEM / Monolix |
| Quick survival analysis with Kaplan-Meier curves | R (survival / survminer) |
| Reproducible Cox PH + validation artifact | NextStat |
| Fast NLME for 1-compartment PK | NextStat |
| Bayesian treatment effect with NUTS + diagnostics | NextStat |
| GPU-accelerated batch hypothesis testing | NextStat |
| Audit-ready validation report (JSON+PDF) | NextStat |
Next Steps
- Survival Analysis — Cox PH, Weibull, log-normal AFT → Survival Analysis
- Bayesian Sampling — NUTS/HMC with full diagnostics → Bayesian Sampling
- Regression & GLM — Logistic, Poisson, negative binomial → Regression & GLM
- Validation Report — GxP-ready JSON+PDF artifacts → Validation Report
- Agentic Tools — LLM tool definitions for AI-driven analysis → Agentic Tools
- Server API — Self-hosted GPU inference for shared compute → Server API
- Glossary — HEP ↔ DS ↔ Quant ↔ Bio term mapping → Glossary
