NextStat for Quants & Risk Analysts
Portfolio risk, causal inference, and model validation
You build models for pricing, risk, and regulatory compliance. NextStat gives you a Rust-speed inference engine with econometrics primitives (Panel FE, DiD, IV/2SLS, AIPW), time series (Kalman filter/smoother, EM, forecasting), and a validation report designed for SR 11-7 model risk management — all callable from Python.
Why NextStat for Finance?
Most quant stacks glue together R, Python statsmodels, and ad-hoc C++ for speed. NextStat replaces the compute layer: one engine that runs GLMs, panel regressions, Kalman filters, and Bayesian NUTS at Rust speed — with deterministic validation artifacts your model risk team can audit.
What You Already Know → What NextStat Calls It
| Finance / Econ | NextStat API | Use Case |
|---|---|---|
| Panel regression (entity FE) | nextstat.panel_fe() | Fund return attribution, cross-sectional asset pricing |
| Difference-in-Differences | nextstat.did() | Policy impact on trading costs, fee changes |
| IV / 2SLS | nextstat.iv_2sls() | Endogeneity correction in demand estimation |
| Doubly-robust estimator (AIPW) | nextstat.aipw() | ATE estimation with model misspecification protection |
| Kalman filter / smoother | nextstat.kalman_filter() | State estimation, volatility tracking, signal extraction |
| EM parameter estimation | nextstat.kalman_em() | Fit state-space model parameters from observed data |
| Forecasting with intervals | nextstat.kalman_forecast() | Multi-step ahead predictions with Gaussian prediction bands |
| Robust / cluster SE | nextstat.ols(robust=True) | HC0–HC3, entity/time clustering for panel data |
Quickstart: Panel Regression + Kalman Forecast
import nextstat
import numpy as np
# --- Panel regression with entity fixed effects ---
y = np.array([...]) # returns: (N*T,)
X = np.array([...]) # features: (N*T, k)
entity = np.array([...]) # entity IDs: (N*T,)
result = nextstat.panel_fe(y, X, entity_ids=entity, robust=True)
print(f"Coefficients: {result.params}")
print(f"Cluster-robust SE: {result.std_errors}")
print(f"R² (within): {result.r_squared_within:.4f}")
# --- Kalman filter for state estimation ---
ys = np.array([...]) # observed prices: (T, obs_dim)
# Define state-space matrices (local level model)
F = np.eye(1) # state transition
H = np.ones((1, 1)) # observation
Q = np.eye(1) * 0.01 # state noise
R = np.eye(1) * 0.1 # observation noise
states = nextstat.kalman_filter(ys, F, H, Q, R)
smoothed = nextstat.kalman_smooth(ys, F, H, Q, R)
forecast = nextstat.kalman_forecast(ys, F, H, Q, R, steps=20)Causal Inference: DiD + Event Study
# Difference-in-Differences with TWFE
did_result = nextstat.did(
y=outcomes,
treat=treatment_indicator,
post=post_period,
X=controls,
entity_ids=firms,
time_ids=quarters,
)
print(f"ATT: {did_result.att:.4f} ± {did_result.att_se:.4f}")
# IV/2SLS for endogeneity
iv_result = nextstat.iv_2sls(
y=demand,
X_endog=price,
X_exog=controls,
Z=instruments,
)
print(f"IV estimate: {iv_result.params}")
print(f"First-stage F: {iv_result.first_stage_f:.1f}")Model Validation for SR 11-7
NextStat generates validation_report.json — a machine-readable artifact with dataset SHA-256 hashes, model specification, environment fingerprint, and per-suite pass/fail results. Designed for model risk management review under SR 11-7 and similar frameworks.
# Generate validation report (CLI)
nextstat validation-report \
--apex2 tmp/apex2_master_report.json \
--workspace workspace.json \
--out validation_report.json \
--pdf validation_report.pdf \
--deterministicPerformance: Why Rust Matters for Quant Workloads
| Workload | vs Python | Note |
|---|---|---|
| MLE fit (100-param model) | 37–880× faster | vs ROOT/RooFit and pyhf on profile scans |
| Batch toy generation (GPU) | 10,000 toys in 7ms | Metal + CUDA (zero-copy with PyTorch) |
| Kalman filter (T=10k) | ~5× faster | Rust BLAS-free, no Python overhead per step |
| Panel FE (N=10k, T=100) | ~3× faster | Demean + OLS in compiled code |
Next Steps
- Econometrics — Panel FE, DiD, IV/2SLS, AIPW reference → Econometrics
- Time Series — Kalman filter, EM, forecasting → Time Series
- Regression & GLM — OLS, logistic, Poisson, robust SE → Regression & GLM
- Validation Report — Audit-ready JSON+PDF artifacts → Validation Report
- Agentic Tools — LLM tool definitions for AI-driven analysis → Agentic Tools
- Server API — Self-hosted GPU inference for shared compute → Server API
- Glossary — HEP ↔ DS ↔ Quant ↔ Bio term mapping → Glossary
